Department of Mathematics
MATH 447 : Probability ModelsCredits: 3 Course Description: This is an introductory course on probability models with a strong emphasis on stochastic processes. The aim is to enable students to approach real-world phenomena probabilistically and build effective models. The course emphasizes models and their applications over the rigorous theoretical framework behind them, yet critical theory that is important for understanding the material is also covered. Topics include: discrete Markov chains, continuous-time Markov chains, Poisson processes, renewal theory, Brownian motion and martingales. Optional topics: queuing theory, reliability theory, and random sampling techniques. Applications to biology, physics, computer science, economics, and engineering will be presented. Pre-Requisites: MATH 345.
|
All Courses
MATH 114 MATH 115 MATH 125 MATH 129 MATH 130 MATH 134 MATH 135 MATH 140 MATH 141 MATH 145 MATH 146 MATH 240 MATH 242 MATH 260 MATH 265 MATH 270/310 MATH 291 MATH 303 MATH 314/280 MATH 320L MATH 345 MATH 346 MATH 350 MATH 354 MATH 356 MATH 358 MATH 360 MATH 361 MATH 370 MATH 380 MATH 384L MATH 390 MATH 420 MATH 425 MATH 426 MATH 440 MATH 447 MATH 448 MATH 450 MATH 454 MATH 458 MATH 460 MATH 470 MATH 478 MATH 480 MATH 490 MATH 540 MATH 545 MATH 550 MATH 551 MATH 560 MATH 570 MATH 597 MATH 620 MATH 625 MATH 626 MATH 640 MATH 642 MATH 647 MATH 648 MATH 673 MATH 674 MATH 677 MATH 680 MATH 696 MATH 697 |